ON THE CONVECTIVE INSTABILITY OF A LIQUID IN AN INCLINED
LAYER OF A POROUS MEDIUM

A. K. Kolesnikov and D. V. Lyubimov UDC 536.25 +532.546

In this paper we study the stability of the equilibrium of a liquid heated from below, wherein
the liguid saturates a planar layer of a porous medium arbitrarily inclined to the direction
of gravity. We consider the cases for which the boundaries of the layer are heat-conducting
and also thermally insulated. In a horizontal layer with heat-conducting boundaries equilib-
rium is destroyed by perturbations of cellular structure [1]. In a vertical layer the mini-
mum critical temperature gradient corresponds to perturbations of plane-parallel structure.
The transition to cellular perturbations in the case of heat-conducting boundaries takes place
at an arbitrarily small angle of inclination of the layer to the vertical. For the thermally in~
sulated layer the crisis of equilibrium is connected with plane-parallel perturbations at all
angles of inclination,

A two-dimensional infinite layer of a porous medium of thickness 2h, bounded by planes impermeable
to a liquid, is inclined at an angle « to the vertical. The conditions of heating are such that an equilibrium
state is possible for which a constant vertical temperature gradient is created in the layer.

The heat convection equations for a porous medium have the form [2]
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’ divv=20
where v is the filtration rate, p the convective addition to the pressure, T the temperature, reckoned from
a mean value, p the density, v the kinematic viscosity, S the coefficient of volume expansion of the liquid,
K the permeability, m the porosity, ¢, the specific heat at constant pressure, y the coefficient of thermal
conductivity, g the gravitational acce]%ration, and y a unit vector, directed vertically upwards. Quantities

provided with the subscripts [ and s refer, respectively, to the liquid and to the porous medium saturated
by the liguid.

At equilibrium we have

vo=0, VI, =— Ay, Vpo =pigBTov (2)
Here A is a constant equilibrium temperature gradient.
For sufficiently large A the equilibrium becomes unstable, small perturbations increasing with time.

If we use the notation v, T, and p for perturbations of the filtration rate, the temperature, and the
pressure, then, taking the Eqgs. (2) into account and linearizing, we have

v
015 =—Vp+ pigBTy — 0, 5V
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(Pep)s ot = #,AT - (pcp), A(vy) (3)
div v=20
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On the layer boundaries the normal component of the filtration velocity vanishes (impermeable
boundaries); the perturbations of the temperature for infinitely heat-conducting boundaries and the pertur-
bations of the heat flow for thermally insulated boundaries also vanish at the layer boundaries. The boundary
conditions for the system (3) have the form

v,=0, T=0 ordT/ox=0for z==%h ()

The equations (3) have solutions proportional to exp (At) (normal perturbations). We can prove, in a
manner analogous to that employed in considering convection in a viscous liquid [3], that for heat applied
from bhelow (A > 0) the decrements are real and the perturbations vary monotonically with the time. In an
isothermal system (A =0) the decrements are negative (stability). The stability boundary is determined
from the condition A =0,and the neutral perturbations are obtained from the stationary equations.

We rewrite the equations in dimensionless form, choosing as the units of distance, temperature, veloc-
ity, and pressure the respective quantities h, Ah,

(KegPAyv™)s, (gBp AR yvK ) swhere x = %, / (pcp)

Then
—ygp—vVv-+CIly=20
AT 4+ C (vy) =0 5)
divv =0
The boundary conditions are
ve=0, T=0 or 0T /9 =0 for z=+1 (6)

Here C? = R=Kgf Ah?/vy, and R is the analog of the Rayleigh number.

We shall henceforth consider only planar perturbations for which vy =0 and all quantities are inde-
pendent of y, In this case it is convenient to introduce a stream function defined by the relations

Sk (7)

dz * z dx

Eliminating the pressure from Eqgs. (5), we obtain
AY +C (sina-%—f—«{— cosa%) =0

AT——C(s‘ma%\:iﬁ— €os o %>=0 (8)

We consider perturbations periodic along the z axis:
Y = ¢ () exp (ikz), T =0 () exp (ik2)

The equations for the amplitudes of the perturbations ¢(x) and ¢ (x) assume the form

¢" — k*¢ + C (ik sin a8 - cos af’) =0
8" — k%0 — C (ik sin ag - cos ag’) =0 9)

The prime indicates differentiation with respect to x. The boundary conditions for the system (9)
can be written in the following form:
=0, 6=0o0r 6 =0 for zr==+1 (10)

The system (9) with the boundary conditions (10) constitutes a characteristic value problem defining,
for a given layer angle of inclination ¢ and perturbation wave number k, a critical value C; upon reaching
this critical value the equilibrium becomes unstable relative to perturbations with a given wavelength,

The general solution of the system (9) has the form

4 4
@ =) ajexp(igiz), 8 = D) bjexp (igz) an
j=1 7=1
(bl —=iai, by =iap, by = — ias, by = — ia4)
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where the q; are the roots of the characteristic equation

AT .
/‘” l _ ¢1=—L+M, gg=—L—M, gg=L+N, gg=L—N
L=1,Ccosa, M =1/, (Ccos® o — 4kC sin o — 4k?)"

s
N =1, (C? cos?a + 4kC sin o — 4k%)':
i . Using the boundary conditions, we obtain a system of four linear
\ﬁ” y homogeneous algebraic equations for the determination of the coeffi-
5 cients aj. Setting the determinant of this system equal to zero, we ob-

We can then obtain the dependence of C on k and « in explicit form:

%Kﬂ // tain an equation connecting C, k, and «.
75 , 2 We consider first the case of ideally heat-conducting boundaries.
K
¢ 2

T C = =% (cos oc)"‘2 [%k Si? Z 3:l: (4k? + n®n?cos?a)’] (12)
n=1,2,3..)

From Eqs. (12) it follows that the minimum critical Rayleigh
number R x is independent of the layer inclination angle:

R, = min (C? = n’n?
To it there corresponds the wave number
ke =5 nusin o

The family of neutral curves R(k) for n=1 is shown in Fig. 1 for various angles «. Perturbations
with k=0 are the most dangerous only for a vertical layer. This conclusion differs qualitatively from the
results obtained in the problem concerning the stability of an inclined layer of a viscous liquid where the
transition to cellular perturbations occurs at a specific critical angle [4, 5].

We can also obtain an explicit expression for the stream function. For example, for the fundamental
level n=1 we have

¥ = qgcos (N — Lz + kz) cos Y/, nx (13)

where a and 7 are arbitrary numbers, corresponding to the fact that the solution is determined to within
a normalization and a translation. It is evident from Eq. (13) that the convective cell boundaries on which
% =0 are straight lines. Their equations, for the most dangerous perturbations (k= 1/;7sing, L= 1/ymcos -
a), have the form

zcoso — gsina = 2n/n 4+ S (14)
(§ = %1, +3,£5,...)

i.e., the cells are separated from one another by vertical straight lines, the distance between which along
the horizontal is two or one layer thicknesses. By varying the parameter n we can displace this system of
lines to the right or to the left, which corresponds to a translation along the z axis. The period of the trans-
lation is

! = 2An/asin a (15)
where An denotes the change in 7.

In the case of the vertical layer the arbitrariness of n leads to the result that we can have a solution
with a single cell occupying the whole layer or we can have a solution with two cells. The boundary between
them is parallel to the layer walls and can be situated at an arbitrary distance from the walls. Thus, for
a vertical layer the critical number R is doubly degenerate.

We consider now the case of thermally insulated boundaries. Imposing on the general solution of the
system (9) the corresponding boundary conditions, we obtain the equation

exp (i) exp (igs) exp (igs) exp (ig,)
exp (— iqy) exp(—igs)  exp(—igs)  exp(—ifa)| 16)
— qrexp(iqy) — goexp(igs)  gsexp{igs) ¢ exp(ig,)

— grexp(— i) — gaeXP(—igs) gseXp(—ids) gseXP(—igs)
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Equation (16) defines the function C(k, ) implicitly. For small wave num-~
Iy | bers (long wavelength perturbations) we write C as a power series expansion
h ,(7/* | in ks

| yda C = Cot Ck* + Cobt* + ... (17)

25 /

The expansion must contain only even powers of the wave number since
]

it is evident from the system (9) that C does not depend on the sign of k. The
system of levels breaks up into two groups: for the one ("even® levels) C;=
—/ « nr/cos a; for the other ("odd" levels) C, is determined from the equation
255 o o -
[4 30 & 4
Fig, 4

27—

tg (C, cos a)/Cocos o = 1/sin® a (18)

Caleculations show that for the first odd level (the fundamental one) C, > 0.
(The expression for C, is rather involved and will not be given here.)

Thus the most "dangerous”® perturbations are those with k= 0.
For the second level (the first even level)
(19)

from these it follows that C,;>0 for « <45°, and that C; < 0 for « >45°, and perturbations with finite k
lead to instability. In the neighborhood of the critical value of the angle o =45°, Cy=—4r 1. (@—ay), and
the wave number of the most dangerous perturbations depends on « according to the law

k, =V 2/aC; (= — ap)*” (20)

C; = {1 —4sin*a)/ncosda ;

?

where C, is taken for o =a,.
To study the behavior of the neutral curves for finite k we solved Eq. (16) numerically.

Figure 2 shows the neutral curves R,(k) for the fundamental instability level for various layer orienta-
tions. For k=0 they have a minimum for all @, and they increase monotonically as k increases. The neu-
tral curves Ry(k) for the second level are shown in Fig. 3. For o <45° they have a minimum at k=0. When
o =45° a change in the form of the instability oceurs, and as the inclination angle is increased still further
cellular perturbations lead to an equilibrium crisis.

In contrast to the case of heat-conducting boundaries, here the minimum critical numbers R, depend
on the layer orientation. This dependence, fairly weak for the fundamental level (Fig. 4), becomes signifi-~
cant at the higher levels. The number of extrema on the neutral curves R(k) increases for the higher levels
and depends on the layer orientation.

The author thanks G. Z. Gershuni for stating the problem and his interest in the work.
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